53 resultados para visual field

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To correlate the dimension of the visual field (VF) tested by Goldman kinetic perimetry with the extent of visibility of the highly reflective layer between inner and outer segments of photoreceptors (IOS) seen in optical coherence tomography (OCT) images in patients with retinitis pigmentosa (RP). METHODS: In a retrospectively designed cross-sectional study, 18 eyes of 18 patients with RP were examined with OCT and Goldmann perimetry using test target I4e and compared with 18 eyes of 18 control subjects. A-scans of raw scan data of Stratus OCT images (Carl Zeiss Meditec, AG, Oberkochen, Germany) were quantitatively analyzed for the presence of the signal generated by the highly reflective layer between the IOS in OCT images. Starting in the fovea, the distance to which this signal was detectable was measured. Visual fields were analyzed by measuring the distance from the center point to isopter I4e. OCT and visual field data were analyzed in a clockwise fashion every 30 degrees , and corresponding measures were correlated. RESULTS: In corresponding alignments, the distance from the center point to isopter I4e and the distance to which the highly reflective signal from the IOS can be detected correlate significantly (r = 0.75, P < 0.0001). The greater the distance in VF, the greater the distance measured in OCT. CONCLUSIONS: The authors hypothesize that the retinal structure from which the highly reflective layer between the IOS emanates is of critical importance for visual and photoreceptor function. Further research is warranted to determine whether this may be useful as an objective marker of progression of retinal degeneration in patients with RP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Visual acuity serves as only a rough gauge of macular function. The aim therefore was to ascertain whether central an assessment of the central visual field afforded a closer insight into visual function after removal of epiretinal membranes and Infracyanine-Green- or Trypan-Blue-assisted peeling of the inner limiting membrane. Patients and methods: Fourty-three patients undergoing pars-plana vitrectomy for the removal of epimacular membranes and dye-assisted peeling of the inner limiting membrane using either Infracyanine Green (n = 29; group 1) or Trypan Blue (n = 14; group 2) were monitored prospectively for 12 months. Preoperatively, and 1, 6 and 12 months postoperatively, distance and reading visual acuities were evaluated; the central visual field was assessed by automated static perimetry. RESULTS: Twelve months after surgery, distance and reading visual acuities had improved in both groups, but to a significant degree only in Trypan-Blue-treated eyes. The difference between the two groups was not significant. Likewise at this juncture, the mean size of the visual-field defect remained unchanged in Trypan-Blue-treated eyes (preoperative: 4.3 (SD 2.1) dB; 12 months: 4.0 (2.1) dB (p = 0.15)), but had increased in Infracyanine-Green-treated ones (from 5.3 (3.7) dB to 8.0 (5.2) dB (p = 0.027)). CONCLUSION: Unlike visual acuity, the central visual field had deteriorated in Infracyanine-Green-treated eyes but not in Trypan-Blue-treated eyes 12 months after surgery. Hence, as a predictor of functional outcome, testing of the central visual field may be a more sensitive gauge than visual acuity. Furthermore, Infracyanine Green may have a chronic and potentially clinically relevant effect on the macula which is not reflected in the visual acuity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on neurophysiological findings and a grid to score binocular visual field function, two hypotheses concerning the spatial distribution of fixations during visual search were tested and confirmed in healthy participants and patients with homonymous visual field defects. Both groups showed significant biases of fixations and viewing time towards the centre of the screen and the upper screen half. Patients displayed a third bias towards the side of their field defect, which represents oculomotor compensation. Moreover, significant correlations between the extent of these three biases and search performance were found. Our findings suggest a new, more dynamic view of how functional specialisation of the visual field influences behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pure alexia is an acquired reading disorder characterized by a disproportionate prolongation of reading time as a function of word length. Although the vast majority of cases reported in the literature show a right-sided visual defect, little is known about the contribution of this low-level visual impairment to their reading difficulties. The present study was aimed at investigating this issue by comparing eye movement patterns during text reading in six patients with pure alexia with those of six patients with hemianopic dyslexia showing similar right-sided visual field defects. We found that the role of the field defect in the reading difficulties of pure alexics was highly deficit-specific. While the amplitude of rightward saccades during text reading seems largely determined by the restricted visual field, other visuo-motor impairments-particularly the pronounced increases in fixation frequency and viewing time as a function of word length-may have little to do with their visual field defect. In addition, subtracting the lesions of the hemianopic dyslexics from those found in pure alexics revealed the largest group differences in posterior parts of the left fusiform gyrus, occipito-temporal sulcus and inferior temporal gyrus. These regions included the coordinate assigned to the centre of the visual word form area in healthy adults, which provides further evidence for a relation between pure alexia and a damaged visual word form area. Finally, we propose a list of three criteria that may improve the differential diagnosis of pure alexia and allow appropriate therapy recommendations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND It has been suggested that sleep apnea syndrome may play a role in normal-tension glaucoma contributing to optic nerve damage. The purpose of this study was to evaluate if optic nerve and visual field parameters in individuals with sleep apnea syndrome differ from those in controls. PATIENTS AND METHODS From the records of the sleep laboratory at the University Hospital in Bern, Switzerland, we recruited consecutive patients with severe sleep apnea syndrome proven by polysomnography, apnea-hypopnea index >20, as well as no sleep apnea controls with apnea-hypopnea index <10. Participants had to be unknown to the ophtalmology department and had to have no recent eye examination in the medical history. All participants underwent a comprehensive eye examination, scanning laser polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, California), scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II, HRT II), and automated perimetry (Octopus 101 Programm G2, Haag-Streit Diagnostics, Koeniz, Switzerland). Mean values of the parameters of the two groups were compared by t-test. RESULTS The sleep apnea group consisted of 69 eyes of 35 patients; age 52.7 ± 9.7 years, apnea-hypopnea index 46.1 ± 24.8. As controls served 38 eyes of 19 patients; age 45.8 ± 11.2 years, apnea-hypopnea index 4.8 ± 1.9. A difference was found in mean intraocular pressure, although in a fully overlapping range, sleep apnea group: 15.2 ± 3.1, range 8-22 mmHg, controls: 13.6 ± 2.3, range 9-18 mmHg; p<0.01. None of the extended visual field, optic nerve head (HRT) and retinal nerve fiber layer (GDx VCC) parameters showed a significant difference between the groups. CONCLUSION Visual field, optic nerve head, and retinal nerve fiber layer parameters in patients with sleep apnea did not differ from those in the control group. Our results do not support a pathogenic relationship between sleep apnea syndrome and glaucoma.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous research has revealed that a stimulus presented in the blind visual field of participants with visual hemifield defects can evoke oculomotor competition, in the absence of awareness. Here we studied three cases to determine whether a distractor in a blind hemifield would be capable of inducing a global effect, a shift of saccade endpoint when target and distractor are close to each other, in participants with lesions of the optic radiations or striate cortex. We found that blind field distractors significantly shifted saccadic endpoints in two of three participants with lesions of either the striate cortex or distal optic radiations. The direction of the effect was paradoxical, however, in that saccadic endpoints shifted away from blind field distractors, whereas endpoints shifted towards distractors in the visible hemifields, which is the normal global effect. These results provide further evidence that elements presented in the blind visual field can generate modulatory interactions in the oculomotor system, which may differ from interactions in normal vision.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In binocular rivalry, presentation of different images to the separate eyes leads to conscious perception alternating between the two possible interpretations every few seconds. During perceptual transitions, a stimulus emerging into dominance can spread in a wave-like manner across the visual field. These traveling waves of rivalry dominance have been successfully related to the cortical magnification properties and functional activity of early visual areas, including the primary visual cortex (V1). Curiously however, these traveling waves undergo a delay when passing from one hemifield to another. In the current study, we used diffusion tensor imaging (DTI) to investigate whether the strength of interhemispheric connections between the left and right visual cortex might be related to the delay of traveling waves across hemifields. We measured the delay in traveling wave times (ΔTWT) in 19 participants and repeated this test 6 weeks later to evaluate the reliability of our behavioral measures. We found large interindividual variability but also good test-retest reliability for individual measures of ΔTWT. Using DTI in connection with fiber tractography, we identified parts of the corpus callosum connecting functionally defined visual areas V1-V3. We found that individual differences in ΔTWT was reliably predicted by the diffusion properties of transcallosal fibers connecting left and right V1, but observed no such effect for neighboring transcallosal visual fibers connecting V2 and V3. Our results demonstrate that the anatomical characteristics of topographically specific transcallosal connections predict the individual delay of interhemispheric traveling waves, providing further evidence that V1 is an important site for neural processes underlying binocular rivalry.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

AIM: To assess functional impairment in terms of visual acuity reduction and visual field defects in inactive ocular toxoplasmosis. METHODS: 61 patients with known ocular toxoplasmosis in a quiescent state were included in this prospective, cross-sectional study. A complete ophthalmic examination, retinal photodocumentation and standard automated perimetry (Octopus perimeter, program G2) were performed. Visual acuity was classified on the basis of the World Health Organization definition of visual impairment and blindness: normal (> or =20/25), mild (20/25 to 20/60), moderate (20/60 to 20/400) and severe (<20/400). Visual field damage was correspondingly graded as mild (mean defect <4 dB), moderate (mean defect 4-12 dB) or severe (mean defect >12 dB). RESULTS: 8 (13%) patients presented with bilateral ocular toxoplasmosis. Thus, a total of 69 eyes was evaluated. Visual field damage was encountered in 65 (94%) eyes, whereas only 28 (41%) eyes had reduced visual acuity, showing perimetric findings to be more sensitive in detecting chorioretinal damage (p<0.001). Correlation with the clinical localisation of chorioretinal scars was better for visual field (in 70% of the instances) than for visual acuity (33%). Moderate to severe functional impairment was registered in 65.2% for visual field, and in 27.5% for visual acuity. CONCLUSION: In its quiescent stage, ocular toxoplasmosis was associated with permanent visual field defects in >94% of the eyes studied. Hence, standard automated perimetry may better reflect the functional damage encountered by ocular toxoplasmosis than visual acuity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of this study was to examine the effects of aging and target eccentricity on a visual search task comprising 30 images of everyday life projected into a hemisphere, realizing a ±90° visual field. The task performed binocularly allowed participants to freely move their eyes to scan images for an appearing target or distractor stimulus (presented at 10°; 30°, and 50° eccentricity). The distractor stimulus required no response, while the target stimulus required acknowledgment by pressing the response button. One hundred and seventeen healthy subjects (mean age = 49.63 years, SD = 17.40 years, age range 20–78 years) were studied. The results show that target detection performance decreases with age as well as with increasing eccentricity, especially for older subjects. Reaction time also increases with age and eccentricity, but in contrast to target detection, there is no interaction between age and eccentricity. Eye movement analysis showed that younger subjects exhibited a passive search strategy while older subjects exhibited an active search strategy probably as a compensation for their reduced peripheral detection performance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Higher visual functions can be defined as cognitive processes responsible for object recognition, color and shape perception, and motion detection. People with impaired higher visual functions after unilateral brain lesion are often tested with paper pencil tests, but such tests do not assess the degree of interaction between the healthy brain hemisphere and the impaired one. Hence, visual functions are not tested separately in the contralesional and ipsilesional visual hemifields. METHODS: A new measurement setup, that involves real-time comparisons of shape and size of objects, orientation of lines, speed and direction of moving patterns, in the right or left visual hemifield, has been developed. The setup was implemented in an immersive environment like a hemisphere to take into account the effects of peripheral and central vision, and eventual visual field losses. Due to the non-flat screen of the hemisphere, a distortion algorithm was needed to adapt the projected images to the surface. Several approaches were studied and, based on a comparison between projected images and original ones, the best one was used for the implementation of the test. Fifty-seven healthy volunteers were then tested in a pilot study. A Satisfaction Questionnaire was used to assess the usability of the new measurement setup. RESULTS: The results of the distortion algorithm showed a structural similarity between the warped images and the original ones higher than 97%. The results of the pilot study showed an accuracy in comparing images in the two visual hemifields of 0.18 visual degrees and 0.19 visual degrees for size and shape discrimination, respectively, 2.56° for line orientation, 0.33 visual degrees/s for speed perception and 7.41° for recognition of motion direction. The outcome of the Satisfaction Questionnaire showed a high acceptance of the battery by the participants. CONCLUSIONS: A new method to measure higher visual functions in an immersive environment was presented. The study focused on the usability of the developed battery rather than the performance at the visual tasks. A battery of five subtasks to study the perception of size, shape, orientation, speed and motion direction was developed. The test setup is now ready to be tested in neurological patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Visual perception is not identical in the upper and lower visual hemifields. The mechanisms behind this difference can be found at the retinal, cortical, or higher attentional level. In this study, a new visual test battery, that involves real-time comparisons of complex visual stimuli, such as shape of objects, and speed of moving dot patterns, in the upper and lower visual hemifields, is presented. This study represents, to our knowledge, the first to implement such a visual test battery in an immersive environment composed of a hemisphere, in order to present visual stimuli in precise regions of the visual field. Ten healthy volunteers were tested in this pilot study. The results showed a higher accuracy in the image matching when the visual test was performed in the lower visual hemifield.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Visual neglect is considerably exacerbated by increases in visual attentional load. These detrimental effects of attentional load are hypothesised to be dependent on an interplay between dysfunctional inter-hemispheric inhibitory dynamics and load-related modulation of activity in cortical areas such as the posterior parietal cortex (PPC). Continuous Theta Burst Stimulation (cTBS) over the contralesional PPC reduces neglect severity. It is unknown, however, whether such positive effects also operate in the presence of the detrimental effects of heightened attentional load. Here, we examined the effects of cTBS on neglect severity in overt visual search (i.e., with eye movements), as a function of high and low visual attentional load conditions. Performance was assessed on the basis of target detection rates and eye movements, in a computerised visual search task and in two paper-pencil tasks. cTBS significantly ameliorated target detection performance, independently of attentional load. These ameliorative effects were significantly larger in the high than the low load condition, thereby equating target detection across both conditions. Eye movement analyses revealed that the improvements were mediated by a redeployment of visual fixations to the contralesional visual field. These findings represent a substantive advance, because cTBS led to an unprecedented amelioration of overt search efficiency that was independent of visual attentional load.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An impairment of the spatial deployment of visual attention during exploration of static (i.e., motionless) stimuli is a common finding after an acute, right-hemispheric stroke. However, less is known about how these deficits: a) are modulated through naturalistic motion (i.e., without directional, specific spatial features); and, b) evolve in the subacute/chronic post-stroke phase. In the present study, we investigated free visual exploration in three patient groups with subacute/chronic right-hemispheric stroke and in healthy subjects. The first group included patients with left visual neglect and a left visual field defect (VFD), the second patients with a left VFD but no neglect, and the third patients without neglect or VFD. Eye movements were measured in all participants while they freely explored a traffic scene without (static condition) and with (dynamic condition) naturalistic motion, i.e., cars moving from the right or left. In the static condition, all patient groups showed similar deployment of visual exploration (i.e., as measured by the cumulative fixation duration) as compared to healthy subjects, suggesting that recovery processes took place, with normal spatial allocation of attention. However, the more demanding dynamic condition with moving cars elicited different re-distribution patterns of visual attention, quite similar to those typically observed in acute stroke. Neglect patients with VFD showed a significant decrease of visual exploration in the contralesional space, whereas patients with VFD but no neglect showed a significant increase of visual exploration in the contralesional space. No differences, as compared to healthy subjects, were found in patients without neglect or VFD. These results suggest that naturalistic motion, without directional, specific spatial features, may critically influence the spatial distribution of visual attention in subacute/chronic stroke patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Perceptual accuracy is known to be influenced by stimuli location within the visual field. In particular, it seems to be enhanced in the lower visual hemifield (VH) for motion and space processing, and in the upper VH for object and face processing. The origins of such asymmetries are attributed to attentional biases across the visual field, and in the functional organization of the visual system. In this article, we tested content-dependent perceptual asymmetries in different regions of the visual field. Twenty-five healthy volunteers participated in this study. They performed three visual tests involving perception of shapes, orientation and motion, in the four quadrants of the visual field. The results of the visual tests showed that perceptual accuracy was better in the lower than in the upper visual field for motion perception, and better in the upper than in the lower visual field for shape perception. Orientation perception did not show any vertical bias. No difference was found when comparing right and left VHs. The functional organization of the visual system seems to indicate that the dorsal and the ventral visual streams, responsible for motion and shape perception, respectively, show a bias for the lower and upper VHs, respectively. Such a bias depends on the content of the visual information.